Homework \#5v2 Math 518 (small correction in \#4 on 9/22)
Due in class Wednesday, September 28, 2011

1. Prove that for any manifolds M and N the tangent bundle $T(M \times N)$ is diffeomorphic to $T M \times T N$.
2. Let A be a vector space over \mathbb{R} with an associative multiplication (for example, A could be the vector space of $n \times n$ matrices with matrix multiplication). That is, let A be an algebra over \mathbb{R}. Define a bracket on A by

$$
[a, b]:=a b-b a
$$

for all $a, b \in A$. Here $a b$ and $b a$ denote the products in A. Prove that A with this bracket is a Lie algebra.
3. Check that $\Phi(t, x)=\frac{x}{1-x t}$ is the flow of the vector field $x^{2} \frac{d}{d x}$ on \mathbb{R}.
4. Prove that if $F: M \rightarrow N$ is a diffeomorphism, then so is the map $d F: T M \rightarrow T N$ defined by

$$
d F(p, v):=\left(F(p), d F_{p}(v)\right) \text { for all } p \in M, v \in T_{p} M
$$

