Homework #5v2 Math 518 (small correction in #4 on 9/22) Due in class Wednesday, September 28, 2011

1. Prove that for any manifolds M and N the tangent bundle $T(M \times N)$ is diffeomorphic to $TM \times TN$.

2. Let A be a vector space over \mathbb{R} with an associative multiplication (for example, A could be the vector space of $n \times n$ matrices with matrix multiplication). That is, let A be an *algebra* over \mathbb{R} . Define a bracket on A by

$$[a,b] := ab - ba$$

for all $a, b \in A$. Here ab and ba denote the products in A. Prove that A with this bracket is a Lie algebra.

- 3. Check that $\Phi(t, x) = \frac{x}{1-xt}$ is the flow of the vector field $x^2 \frac{d}{dx}$ on \mathbb{R} .
- 4. Prove that if $F: M \to N$ is a diffeomorphism, then so is the map $dF: TM \to TN$ defined by

 $dF(p,v) := (F(p), dF_p(v))$ for all $p \in M, v \in T_pM$.